반응형
9의 특별한 성질
9에 어떤 수를 곱해도 그 곱한 수들의 각 자리 숫자를 모두 더했을 때 다시 9로 돌아오는 특성이 있습니다. 이를 간단히 설명하면 다음과 같습니다.
9의 특별한 성질
9의 배수는 각 자리 숫자의 합이 9의 배수가 되는 성질을 가지고 있습니다. 예를 들어:
- 9 x 1 = 9 (9의 자리 합은 9)
- 9 x 2 = 18 (1 + 8 = 9)
- 9 x 3 = 27 (2 + 7 = 9)
- 9 x 4 = 36 (3 + 6 = 9)
- 9 x 5 = 45 (4 + 5 = 9)
- 9 x 6 = 54 (5 + 4 = 9)
- 9 x 7 = 63 (6 + 3 = 9)
- 9 x 8 = 72 (7 + 2 = 9)
- 9 x 9 = 81 (8 + 1 = 9)
- 9 x 10 = 90 (9 + 0 = 9)
왜 이런 일이 일어날까요?
이 현상은 9의 배수의 성질 때문입니다. 이를 좀 더 수학적으로 설명하면 다음과 같습니다:
- 각 자리 수의 합의 성질: 어떤 수 ( n )이 있을 때, 그 수를 9로 나눈 나머지는 그 수의 각 자리 숫자의 합을 9로 나눈 나머지와 같습니다. 예를 들어, 27을 9로 나누면 나머지가 0이 되고, 2+7=9도 9로 나누면 나머지가 0이 됩니다.
- 9의 배수의 특성: 9의 배수는 항상 각 자리 숫자의 합이 9의 배수입니다. 따라서 9의 배수를 만들면, 그 배수의 각 자리 숫자를 더하면 항상 9의 배수가 나옵니다.
결론
따라서 9에 어떤 수를 곱하더라도 그 결과의 각 자리 숫자를 모두 더하면 9가 되는 특별한 성질을 가지게 됩니다. 이 때문에 "9에 어떤 수를 곱해도 모두 자기 자신으로 돌아온다"는 표현이 맞습니다. 이 특성을 이용하면 구구단을 외울 때 9단을 더 쉽게 기억할 수 있습니다.
'수학과 일상생활' 카테고리의 다른 글
세상을 지배하는 이진법 (0) | 2024.06.08 |
---|---|
구구단을 외우지 못하고 곱셈을 하는 방법 (3) | 2024.06.07 |
친절한 선생님과 함께하는 구구법 (1) | 2024.06.04 |
심청전에서의 공양미 삼백석은 오늘날의 가치로 얼마나 될까? (1) | 2024.05.25 |
수학과 과학의 차이 (0) | 2024.05.23 |